

Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)

The Fuzzy Origin–Destination Matrix Estimation for Planning Air Traffic

Vladimir Sudakov sudakov@ws-dss.com

This research has been supported by Russian Science Foundation, project 17-71-30014

Problem definition

Aviation has quite detailed statistics on air transportation between individual airports.

In Russia (in the form of 14GA), in the U.S. (in the T-100 data bank) these data are collected monthly by aviation authorities.

But it is problematic to understand how many passengers are forced to transit.

Fuzzy Origin–Destination Matrix

The flow along the arc d is equal to the sum of all correspondences from i to j through d:

$$V_{d} = \sum_{i} \sum_{j} p_{ij}^{d} x_{ij} \forall d \in D$$

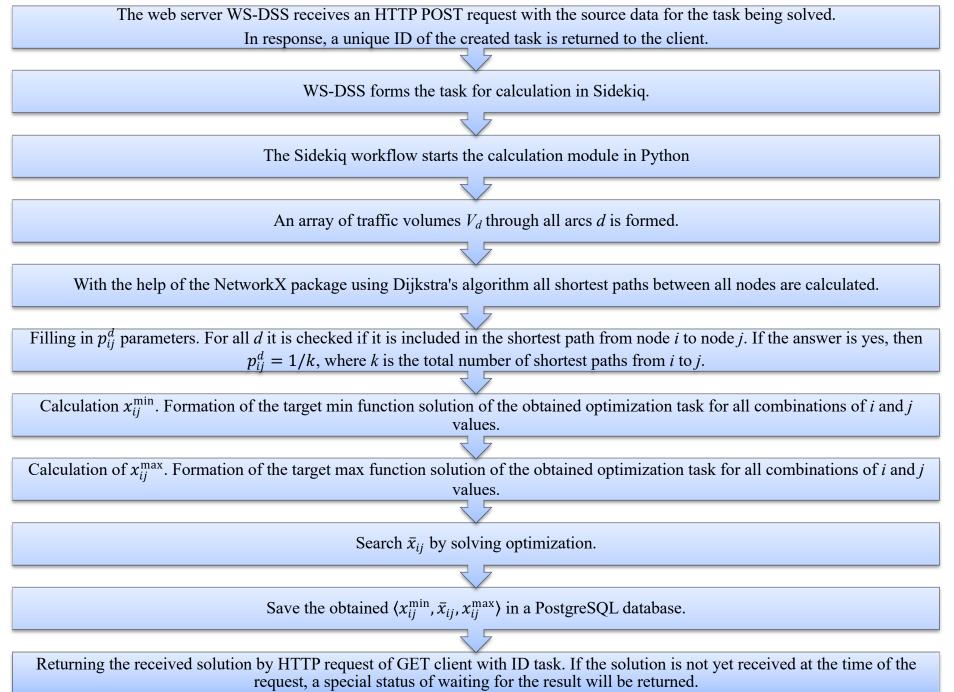
$$X_{ij} = \langle x_{ij}^{\min}, \bar{x}_{ij}, x_{ij}^{\max} \rangle$$

$$x_{ij}^{\min} = \min_{x_{ij}} x_{ij}$$

$$x_{ij}^{\max} = \max_{x_{ij}} x_{ij}$$

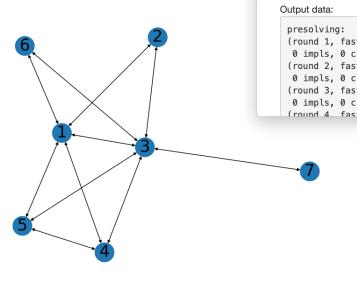
$$\bar{x}_{ij} \cong \alpha_{ij} x_{ij}^{\max} + (1 - \alpha_{ij}) x_{ij}^{\min}$$

$$\min_{\bar{x}_{ij}} \max_{i,j} |\bar{x}_{ij} - \tilde{x}_{ij}|$$


WS-DSS.COM

- Ruby on Rails
- PostgreSQL
- Implementation of models in Python, Ruby, R, C ++
- SCIP, metis, nlopt optimizers
- RESTful API integration with JSON and console methods via

	≅ws-dss.com Ĉ	0
Jobs Models About the author Students	Administration	G
Welcome to Web Services for Decision Sup	oport Systems!	
On this portal there are a lot of methods to support decision-making and oper methods are available for free through RESTful API after registrations.	erations research including methods of multiple-criteria decision analysis and optimization method	is. All
Download RESTful API manual Example		
Main available methods:		
Method	Description	
aircraft_schedule		
ant_colony	The solution to the problem of finding the shortest path in a graph by the ant colony method. input data are represented as: { "from_vertex" : " <the initial="" name="" of="" the="" vertex="">", "to_vertex" name of the destination of the final vertex>", "graph":{ "name initial vertices": { "name input vertex" : < arc length >, "the name of the incoming vertex 2": < the length of the arc> }, } }</the>	: " <the< td=""></the<>
bellman_ford	Realization of the Bellman-Ford algorithm. The Bellman-Ford algorithm is designed to solve th problem of finding the shortest path on a graph. The algorithm finds the shortest distance for weighted graph from the selected source vertex to all other vertices of the graph. Its distinctive feature is its applicability to graphs with arbitrary including negative weights. The input data c an array of edges "graph" each of which consists of the verter "from", the verter "to" and the weight of the edge; the number of the initial vertex "vertex" for which the search is performed variable "isDirect" which can take the values 1 and 0, depending on whether the graph is orier not. Software implementation: N. Khrapov.	a given ve contain: e l; the
concordance		
consistency_increase		
eulerian_path	Search for the Eulerian path in an undirected graph. It's necessary to specify an array of edge Optional parameter: the number of the initial vertex. {"Graf": [[1,2], [2,3]], "initial": 1}	s.


General algorithm

MODEL EXAMPLE

The testing of the system was carried out according to the data on air traffic in Russia between 7 airports:

- Ekaterinburg, 1.
- Mineralnye Vody, 2.
- 3. Moscow,
- Omsk, 4.
- 5. Samara,
- 6. Syktyvkar,
- 7. Makhachkala.

			🗎 ws-dss.d	com	User: sud	dakov@ws-dss.com Русски	
WSDSS	Jobs Models	s Expert estimate	s About the au	thor Students	Administration	1	C
lethod: fuzzy_od_m ser: sudakov@ws-o put data:							
1,2,3933 1,3,96707 1,4,293 1,5,1693 1,6,439 7,3,51188 2,1,4073 2,3,71620 3,1,93759 3,7,53810							
3,2,76650 3,4,40848		< >	●	🗎 ws-ds	s.com	Ċ	0 1 6
3,5,61964 3,6,12123 4,1,359 4,3,41144 4,5,212 5,1,2105		SCIP Status Solving Time Solving Node Primal Bound Dual Bound Gap	(sec) : 0.01 s : 1 : +2.83239	is solved [optima 000000000e+05 (1 000000000e+05	l solution found] solutions)		
5,3,62557 5,4,149 6,1,444 6,3,13104		i j 1 2 4 2 5 2	x* yp 2479 0 179 0 1052 0	yn xmin 0 1025 0 0 0 0	x_arg xmax 2479 3933 179 359 1052 2105		
utput data:		6 2 1 3 1 7	222 0 83211 0 13495 13409	0 0 13409 42897 0 0	1052 2105 222 444 69802 96707 26905 53810		
presolving: (round 1, fast)		1 4 2 4 6 4	97 48 146 0 48 97	0 0 0 0 0 0	146 293 146 293 146 293		
0 impls, 0 clq (round 2, fast) 0 impls, 0 clq	s	1 5 2 5 6 5	772 74 846 0 74 148	0 0 0 0 0 0	846 1693 846 1693 222 444		
(round 3, fast) 0 impls, 0 clq (round 4. fast)	s	1 6 2 6 4 6	86 133 219 0 59 119	0 0 0 0 0 0	219 439 219 439 179 359		
		5 6 7 3 7 1	73 146 8531 17062 12724 12869	0 0 0 0 0 0	219 439 25594 51188 25594 51188		
→7		7 2 7 4 7 5	8531 17062 6808 13616 8531 17062	0 0	25594 51188 20424 40848 25594 51188		
		7 6 2 1 2 3	6061 0 2860 0 62651 0		606112123286040734471571620		
		2 7 3 1 3 7	81034 0 8968 17936	0 0	26905 53810		
		4 7 5 7 6 7 3 2	6857 13714 8968 17936 6552 0 68118 0		20572 41144 26905 53810 6552 13104 51056 76650		
		5 Z	00110 0	1/002 23462	71020 \0020		

The fuzzy origin-destination matrix allows to solve the following problems:

- Optimal route planning
- Rational scheduling
- Assessment of aircraft import substitution prospects
- Analysis of possibilities to replace outdated aircraft equipment
- Support for decision making on modernization of existing transport infrastructure

Prospects

Let's integrate your models Write me: sudakov@ws-dss.com

Thanks for attention!